Social cognition, social competence, negative symptoms and social outcomes: Inter-relationships in people with schizophrenia

Marc Kalin, Sara Kaplan, Felicia Gould, Amy E. Pinkham, David L. Penn, Philip D. Harvey

*Article info*

**ARTICLE INFO**

**Article history:**
Received 24 March 2015
Received in revised form 18 May 2015
Accepted 9 July 2015

**Keywords:**
Schizophrenia
Negative symptoms
Social competence
Social cognition
Social functioning

**Abstract**

Social deficits are common in people with schizophrenia and the treatment of deficits in social competence has been a long-time treatment strategy. However, negative symptoms and social cognitive deficits also contribute to social dysfunction. In this study, we examined the correlations between everyday social outcomes, a performance based measure of social competence, and performance on 8 different social cognition tests in 179 patients with schizophrenia. Social cognition, social competence, and motivation-related negative symptoms accounted for 32% of the variance in real-world social outcomes. In addition, two different social cognition tests, along with expression-related negative symptoms accounted for 32% of the variance in performance-based assessments of social competence. These data suggest that negative symptoms exert an important influence on social outcomes and social competence, but not social cognition, and that social cognition and social competence exert separable influences on real-world social outcomes. Improving social outcomes seems to require a multi-faceted approach which considers social cognition, social competence, and negative symptoms.

© 2015 Published by Elsevier Ltd.

Impairment in real-world social functioning is a central feature of schizophrenia (Bellack et al., 1990; Hooley, 2010). Social functioning deficits are seen in people before they develop schizophrenia, as well as in relatives of those with the disease (Couture et al., 2006). While current pharmacological treatments for schizophrenia reduce rehospitalizations, they have not significantly helped with poor functional outcomes, including social deficits (Harvey and Bowie, 2012; Priebe, 2007). Social skills training has been the mainstay psychosocial treatment for many years with the rationale that learning social competencies would be helpful in improving social functioning (Smith et al., 1996). While social skills training can improve deficits in social competence, negative symptoms, which include deficits in both motivation and emotional expression, correlate with poor everyday social outcomes and do not respond to current pharmacological interventions (Fervaha et al., 2013; Kirkpatrick et al., 2006).

Recently, we (Robertson et al., 2014) examined a large sample of patients with schizophrenia (n = 561) and found that clinical assessments of two particular negative symptoms, passive social withdrawal and active social avoidance, accounted for more variance in real world social outcomes than performance on an interactive assessment of social competence. Furthermore, those analyses showed that these two negative symptoms exerted their influence on social outcomes independently of the correlations between social competence and real world social outcomes. Thus, failures to engage in social activities were not correlated with performance-based measures of social competence and patients with both high and low levels of social competence were found to have essentially equivalent levels of social functioning.

Research also has shown a consistent relationship between social cognition and everyday social outcomes (Mancuso et al., 2011; Penn et al., 2008). Social cognition has been defined as the “mental
operations that underlie social interactions, including perceiving, interpreting, and generating responses to the intentions, dispositions, and behaviors of others” (Green et al., 2008). Social cognition is typically broken down into four domains: emotion processing, social perception, attributional bias, and theory of mind (Green and Horan, 2010; Pinkham et al., 2014). Emotion processing is defined as the ability to understand the emotions that another is experiencing by observing facial expressions, vocal features, or both. Social perception is the ability to interpret social cues from behavior in a social context. Theory of mind is the ability to infer others’ intentions, beliefs, and dispositions. Attributional style is the ability to develop ideas regarding the cause of both positive and negative life events. There is mounting evidence to suggest that deficits in social cognition are a distinct contributing factor to poor social outcomes in schizophrenia and that deficits in social cognition may also correlate with deficits in social competence (Horan et al., 2008; Mancuso et al., 2011).

The past findings indicate that social skills, negative symptoms, and social cognition all have been found to predict real-world social outcomes, but not necessarily in the same study. For instance, a recent study looked at both social cognitive impairments and negative symptoms as predictors of functional outcomes (Bell et al., 2011). The researchers examined whether social cognition and social cognitive impairments in social competence were directly correlated with functional outcomes were related or separate constructs. As expected, the data showed that high levels of social cognition and low levels of negative symptoms were correlated with more positive functional outcomes. The findings also indicated that these two domains—negative symptoms and social cognition—were separate, distinct factors contributing to poor outcomes, suggesting that efforts to improve treatments should focus on treating these two domains of impairment. However, this study did not include a performance-based assessment of social competence or social skills. Another study examined the effects of performance on a social cognition task (i.e., a Theory of Mind task), negative symptoms, and a performance-based assessment of social competence on real-world social outcomes (Couture et al., 2011). They found that theory of mind deficits acted as a mediator between social competence and social outcomes, and also that negative symptoms and social competence were directly correlated with functional outcomes. While informative, it is noteworthy that this study examined only one domain of social cognition. Given the multidimensional nature of social cognition noted above, an important next step is to understand the interrelationship among all known domains of social cognition, social competence, and negative symptoms and how they predict social outcomes. Developing a broader understanding of these factors has the potential to guide the development of treatment strategies to most efficiently improve social functioning in patients with schizophrenia.

The present study aimed to examine and quantify the cross-sectional contribution of several known predictors of real-world social outcomes, including negative symptoms, social competence (measured with a performance-based social skills task), and social cognition (measured with 8 different measures) in 179 patients with schizophrenia. This sample is entirely independent from the previous sample reported on by Robertson et al. (2014). The current study used items from the Positive and Negative Syndrome Scale (PANSS) to index negative symptoms while also using the PANSS positive symptom factor for comparison purposes. Social competence was measured with the Social Skills Performance Assessment (SSPA; Patterson et al., 2001). Real-world social outcomes were obtained from ratings generated with a structured rating system that generated ratings on the basis of input from patients and from a variety of different informants. This study examined not only the relationships between social skills, negative symptoms, and social cognition with social outcomes, but also the predictive relationships between interactive measures of social competence, performance-based measures of social cognition, and clinical ratings of negative symptoms. Our primary hypothesis was that including social cognition in the predictive equation would increase the level of variance in real world social outcomes accounted for, compared to the previous study which used only social competence and negative symptoms as predictors. We also expected that if there were an overlap between predictors, a comprehensive assessment of social cognition would reduce the predictive relationship between negative symptoms and real world social outcomes by accounting for variance that previously was attributed to negative symptoms. Our negative symptoms assessment included both motivation deficits and expression deficits to the extent that these concepts are captured by the PANSS.

1. Methods

1.1. Subjects

The data was collected in two different geographical locations. The study participants were patients (n = 179) with schizophrenia or schizoaffective disorder, receiving treatment at outpatient locations in Miami and Dallas. Miami patients were recruited from the outpatient services at the University of Miami Miller School of Medicine. Patients in Dallas were recruited using Metrocare Services, a large non-profit provider of mental health services in Dallas County, as well as other outpatient services associated with the University of Texas Southwestern Medical (UTSW) Center. All research participants signed informed consent forms in accordance with the policies of their respective Institutional Review Boards. Patients were participants in the Social Cognition Psychometric Evaluation (SCOPE) study (Pinkham et al., 2014) from whom data were collected between October 2012 and May 2014.

All participants completed a structured diagnostic interview—the Mini International Neuropsychiatric Interview, 6th Edition (MINI) (Sheehan et al., 1998)—administered by a trained interviewer, followed by a consensus process at each site. Additionally during screening, all participants were administered the Wide Range Achievement Test, 3rd Edition (WRAT-III) Recognition Reading subtest (Wilkinson, 1993). Grounds for exclusion from the study included a history of traumatic brain injury, brain disease such as seizure disorder or neurodegenerative condition, a reading score below the 6th grade reading level, or the presence of another DSM-IV diagnosis that would exclude the diagnosis of schizophrenia. In order for the data to reflect findings from an inclusive range of participants and their real-world conditions, comorbid substance use disorders were only an exclusion criterion if the patient had a diagnosis of substance abuse in the last month or substance dependence in the past 6 months. Any patients who arrived for their study visits appearing intoxicated were rescheduled. Patients who were currently receiving inpatient treatment were not recruited, but those living in many different kinds of residential facilities—supervised, unsupervised, supported, or unsupported—were all recruited.

1.2. Assessment strategy. Upon completion of a successful screening, the collection of test assessments was completed in a counter-balanced order

1.2.1. Real-world functional outcomes

Informants were identified by the participants and were high contact clinicians, family members, or close friends. We used the Specific Levels of Functioning (SLOF; Schneider and Struening, 1983) as our functional outcomes rating scale. Ratings for each
item were made on a 1–5 point scale with higher scores indicating better functioning. Interviewers who talked both to informants and to the patients generated the ratings on the basis of all available information, following the procedures that we had previously adopted in the Validation of Everyday Real World Outcomes (VALERO), phase I study (Harvey et al., 2011). In this report we focused our efforts only on identifying the correlates of the ratings of the interpersonal functioning subscale.

1.2.2. Performance-based social competence

The Social Skills Performance Assessment (SSPA) (Patterson et al., 2001) was used to measure social competence. As our group has described previously (e.g., Robertson et al., 2014), the SSPA is an abbreviated and adapted version of the role-play components of the Maryland Assessment of Social Competence (MASC) (Sayers et al., 1995) which aims to measure social skills for patients with schizophrenia. Two role-play scenarios are presented after a brief role practice (i.e., greeting a new neighbor and calling a landlord to request the repair of a leak that remains unrepaired despite a previous request); the participants are then expected to start and maintain a conversation for 3 min per role-play. Sessions were administered and audiorecorded by raters trained in test administration but untrained in scoring, thus reducing potential biases in the administration of the test. All SSPAs were scored by a single expert scorer blind to participant identity, psychiatric ratings, and all other study related data. In order to generate a single score, the multiple rating domains for each scene were averaged and then the total scores for the two scenes were combined into a single score, consistent with the previous research using this measure.

1.2.3. Social cognition

Eight measures that had been previously selected for their potential validity were used to measure social cognition (Pinkham et al., 2014). The measures were: the Ambiguous Intentions and Hostility Questionnaire: Abbreviated version (AIHQ: three sub-scales) (Combs et al., 2007), the Bell Lysaker Emotion Recognition Test (BLERT) (Bryson et al., 1997), the Penn Emotion Recognition Test (ER-40) (Kohler et al., 2003), the Relationships Across Domains — Abbreviated Version (RAD) (Sergi et al., 2009), the Reading the Mind through the Eyes task (Eyes; Baron-Cohen et al., 2001), The Awareness of Social Inferences Test, Part III (TASIT III) (McDonald et al., 2003), the Hinting task (Corcoran et al., 1995), and the Trustworthiness Task, Abbreviated version (Adolphs et al., 1998). See Table 1 for a description of these measures and the domains that they measure.

1.2.4. Clinical symptom ratings

The Positive and Negative Syndromes Scale (PANSS) — a widely used assessment tool in schizophrenia research (Kay et al., 1987) — was used to measure symptomatology. This instrument consists of 30 items assessing the severity of positive symptoms, negative symptoms, and other general features of psychopathology. The PANSS was administered and scored by a trained rater other who was not an informant for the SLOF. The PANSS “Marder Factor” was used as a composite measure of negative symptoms (Marder et al., 1997). This factor includes the items of “blunted affect”, “emotional withdrawal”, “poor rapport”, “passive social withdrawal”, “lack of spontaneity”, “motor retardation”, and “active social avoidance”. This factor has been tested against and compared to other frequently used measures of negative symptoms in schizophrenia, and has proven to be a valid composite measure (Daniel, 2013). In our previous study of 561 patients (Robertson et al., 2014), no symptoms other than symptoms from this factor were significantly correlated with SLOF Interpersonal Functioning subscale scores. We performed a similar analysis in this study as well.

1.3. Statistical approach

Multiple regression analyses were used to examine the relative importance of social competence, negative symptoms, and social cognition in their abilities to predict social outcomes. First, the relationships between social competence, negative symptoms and social cognition were examined. Stepwise regression analyses were run to examine the relative importance of the 8 social cognition measures and total, as well as individual negative symptoms, for the prediction of SLOF total scores. Then a similar analytic strategy was used to predict the SLOF interpersonal functioning scores. The 8 social cognition measures, SSPA total scores, and the PANSS negative symptoms were used to predict SLOF interpersonal functioning subscale scores.

2. Results

Table 2 presents demographic information on patient participants. Table 3 shows the means, standard deviations, and ranges for the real-world social functioning variables as well as the predictor variables, which include PANSS symptoms and social cognition measures. Table 4 shows the intercorrelations between these same variables. As seen in Table 4, many of the social cognition measures have significant correlations with one another. Additionally, overall scores on negative symptoms, as well as four of the social cognitive measures (BLERT, Hinting Task, RAD, and TASIT), and SSPA scores, were significantly correlated with SLOF interpersonal functioning scores. Negative symptoms were correlated with social competence and real-world social outcomes, but manifested smaller correlations with the measures of social cognition. Similarly to our previous study with a separate sample, the overall PANSS positive symptom factor did not correlate significantly with interpersonal functioning and only one of the positive symptoms, conceptual disorganization, was correlated significantly with interpersonal functioning, Pearson r = −.26, p < .001.

2.1. Prediction of social competence

First, a stepwise regression was completed analyzing the relationship between the various measures of social cognition (AIHQ, BLERT, ER-40, Eyes task, Hinting Task, TASIT, RAD, and Trust task) and the SSPA total score. In this analysis, the Hinting task entered the equation first, t(176) = 5.98, p < .001, R² = .16. The Eyes task entered the equation next, contributing another 3 percent of the variance, t(175) = 4.66, p < .001, R² = .19. No other social cognition tests predicted SSPA performance in this stepwise model.

We then repeated the regression analysis adding total scores on negative symptoms into the equation. The Hinting task entered first, t(176) = 5.96, R² = .16, followed by negative symptoms, t(175) = 5.08, p < .001, R² = .25, and the ER-40 entered last, accounting for 2% of the variance (total R² = .27). Thus, negative symptoms add to the prediction of social competence, but do not reduce the impact of social cognition on social competence. The aspects of social cognition that predict social competence were altered by the addition of the negative symptoms as a predictor, however.

We repeated the analysis for a final time, entering the six individual negative symptoms (blunted affect, emotional withdrawal, passive social withdrawal, lack of spontaneity, flow of conversation, motor retardation, and active social avoidance) into the equations, as well as the eight social cognitive tests to predict SSPA scores. The largest predictor of SSPA scores were ratings of the
PANSS item lack of spontaneity and flow of the conversation, t(176) = 6.30, p < .001, R² < .17, followed by scores on the Hinting Task, t(175) = 5.06, p < .001, R² = .27, followed by ratings of blunted affect, t = 2.80, p = .006, R² = .30, followed by scores on the BLERT, t(174) = 2.13, p = .034, R² = .32. Thus, considering the impact of individual negative symptoms adds to the prediction of social competence from negative symptoms and performance-based social cognition measures when they are measured concurrently. It also alters the specific emotion perception test that predicts social competence, but does not eliminate the influence of the emotion perception construct on social competence.

### 2.2. Predicting interpersonal functioning

The next stepwise regression examined the impact of the total negative symptoms score, social competence, and the 8 social cognition variables on the SLOF interpersonal functioning subscale. Negative symptoms entered first, accounting for 18% of the variance in scores on the subscale, t(176) = 6.03, p < .001, R² = .18. Entering the equation next was the SSPA, t(175) = 4.58, p < .001, R² = .24. The BLERT entered the equation next, contributing another 5 percent of the variance in SLOF interpersonal functioning, t(175) = 4.12, p < .001, R² = .29.

The next analysis performed via stepwise regression aimed to examine the relative impact of the six individual negative symptoms, social cognition, and social competence on interpersonal functioning. Active social avoidance entered the equation first, t(176) = 5.35, p < .001, R² = .13. Entering the equation next was the SSPA, t(175) = 4.58, p < .001, R² = .22. The BLERT entered the equation third, t(174) = 3.63, p < .001, R² = .28. Passive apathetic social withdrawal was the final variable to enter into the equation, t(173) = 2.83, p < .01, R² = .32.

### 3. Discussion

Previous studies have examined the predictive relationships between negative symptoms, social competence, and social cognition and everyday social outcomes, but this is the first study to our knowledge that concurrently examined the interaction between social competence, a comprehensive assessment of social cognition, negative symptoms, and social functioning. Negative symptoms reflecting reduced motivation for social engagement appear to be the best predictors of everyday social outcomes in people with schizophrenia. Most of the variance in accounted for in
real-world social outcomes was related to negative symptoms, including active social avoidance and passive-apatheic social withdrawal. This is identical to the finding in our previous study of 561 patients where social cognition was not assessed. However, the present results indicate that both social cognition and social competence were inter-related to a considerable degree and that both predicted everyday social outcomes beyond the influence of negative symptoms. Finally, different negative symptoms were related to social competence in a different way compared to those that were directly correlated with social outcomes. The negative symptoms that related to social competence were deficits in expression, both emotional and verbal, in contrast to the deficits in motivation to engage in social acts that correlated directly with reduced social functioning.

There are several implications of these analyses. Different negative symptoms were correlated with social competence and real-world social outcomes. Expression-related symptoms predicted social competence while symptoms reflecting social cognition were directly correlated with everyday social outcomes. Thus, negative symptoms had both direct and indirect effects on social outcomes.

The social cognitive variables that had a direct impact on social outcomes were related to emotion recognition, while the social cognitive variable that had the largest impact on social competence was an interactive test that measures the ability to understand social cues as well as emotion recognition.

Another area of critical importance is self-assessment, including assessment of social cognitive competence. Examination of social metacognition is an important topic for future research, as it is likely that the ability to evaluate one’s social cognitive (and social competence) performance may have functional importance. For instance, as shown by Lysaker et al. (2013) metacognitive abilities have a complex relationship with standard metacognitive measures and both relate to functional outcomes. We also showed recently (Gould et al., 2015, in press) that mis-estimation of abilities may be as important as the abilities themselves when predicting functional outcomes.

There are limitations of these results. The definition of interpersonal functioning on the SLOF is similar to the definitions of the social motivation oriented negative symptoms. Different raters collected these data and they were unaware of the other scores. At the same time, this overlap in definitions is likely to increase the correlation between negative symptoms and social outcomes. However, this potential confound cannot explain the correlations between performance-based measures of social competence and social cognition, the correlations between the performance based assessments of social cognition and social competence and social outcomes, and the correlations between expression-related negative symptoms and social competence. Further, this is a demanding research study and not all patients with schizophrenia are likely to be able to participate in it.

There are several potential implications for future research that might inform treatment interventions. In a recent review, psychosocial interventions were found to be effective at reducing negative symptoms (Elis et al., 2013). Specifically, cognitive behavioral therapy (CBT) and social skills training (SST) showed the most evidence for decreasing negative symptoms acutely and even after 6 months of treatment. Since our data demonstrated that passive-

### Table 3
Scores on PANSS, social functioning, social competence, and social cognition.

<table>
<thead>
<tr>
<th>Variables</th>
<th>M</th>
<th>SD</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>PANSS Negative symptoms</td>
<td>13.72</td>
<td>5.29</td>
<td>6–38</td>
</tr>
<tr>
<td>PANSS Positive symptoms</td>
<td>15.14</td>
<td>5.79</td>
<td>8–36</td>
</tr>
<tr>
<td>PANSS Total</td>
<td>60.69</td>
<td>14.86</td>
<td>36–102</td>
</tr>
<tr>
<td>Specific levels of functioning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(SLOF): interpersonal functioning</td>
<td>3.29</td>
<td>.89</td>
<td>1–5</td>
</tr>
<tr>
<td>Ambiguous intentions hostility</td>
<td>2.38</td>
<td>.61</td>
<td>1–5</td>
</tr>
<tr>
<td>questionnaire (AIHQ) hostility</td>
<td>1.88</td>
<td>.39</td>
<td>1–5</td>
</tr>
<tr>
<td>AIHQ Aggression</td>
<td>8.76</td>
<td>2.85</td>
<td>1–5</td>
</tr>
<tr>
<td>Bell–Lysaker emotion recognition</td>
<td>13.24</td>
<td>3.82</td>
<td>0–21</td>
</tr>
<tr>
<td>Penn emotion recognition test</td>
<td>29.69</td>
<td>5.37</td>
<td>0–40</td>
</tr>
<tr>
<td>Eyes task</td>
<td>20.22</td>
<td>5.52</td>
<td>0–36</td>
</tr>
<tr>
<td>Hinting task</td>
<td>13.65</td>
<td>3.80</td>
<td>0–20</td>
</tr>
<tr>
<td>The awareness of social inferences</td>
<td>44.55</td>
<td>7.55</td>
<td>0–64</td>
</tr>
<tr>
<td>Trust task</td>
<td>-.12</td>
<td>1.13</td>
<td>−3 to 3</td>
</tr>
<tr>
<td>Relationships across domains</td>
<td>24.79</td>
<td>5.79</td>
<td>0–45</td>
</tr>
<tr>
<td>Social skills performance assessment (SSPA)</td>
<td>4.14</td>
<td>.53</td>
<td>1–5</td>
</tr>
</tbody>
</table>

### Table 4
Intercorrelations of variables.

<table>
<thead>
<tr>
<th>Pearson correlations</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. SLOF Interpersonal</td>
<td>−.398b</td>
<td>−.049</td>
<td>−.011</td>
<td>−.104</td>
<td>.271b</td>
<td>.100</td>
<td>.109</td>
<td>.165b</td>
<td>.228b</td>
<td>.069</td>
<td>.202b</td>
<td>.311b</td>
<td></td>
</tr>
<tr>
<td>2. Negative symptoms</td>
<td>−</td>
<td>−.080</td>
<td>−.065</td>
<td>−.022</td>
<td>−.053</td>
<td>−.058</td>
<td>−.137b</td>
<td>−.104</td>
<td>−.225b</td>
<td>.075</td>
<td>−.206b</td>
<td>−.349b</td>
<td></td>
</tr>
<tr>
<td>3. AIHQ Hostility</td>
<td>−</td>
<td>−</td>
<td>−.128</td>
<td>.614b</td>
<td>−.151b</td>
<td>−.203b</td>
<td>−.234b</td>
<td>.020</td>
<td>−.228b</td>
<td>−.087</td>
<td>−.129b</td>
<td>.037</td>
<td></td>
</tr>
<tr>
<td>4. AIHQ Aggression</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−.259b</td>
<td>−.044</td>
<td>−.006</td>
<td>−.117</td>
<td>.037</td>
<td>−.224b</td>
<td>−.099</td>
<td>−.092</td>
<td>.064</td>
<td></td>
</tr>
<tr>
<td>5. AIHQ Blame</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−.142b</td>
<td>−.073</td>
<td>−.189b</td>
<td>−.007</td>
<td>−.095b</td>
<td>−.010</td>
<td>−.104</td>
<td>.083</td>
<td></td>
</tr>
<tr>
<td>6. BLERT</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>.576b</td>
<td>.526b</td>
<td>.437b</td>
<td>.539b</td>
<td>−.056</td>
<td>.272b</td>
<td>.275b</td>
</tr>
<tr>
<td>7. ER-40</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>.527b</td>
<td>.323b</td>
<td>.517b</td>
<td>−.114</td>
<td>.480b</td>
<td>.259b</td>
</tr>
<tr>
<td>8. Eyes</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>.485b</td>
<td>.565b</td>
<td>.011</td>
<td>.585b</td>
<td>.315b</td>
</tr>
<tr>
<td>9. Hinting</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>.475b</td>
<td>.008</td>
<td>.382b</td>
<td>.404b</td>
</tr>
<tr>
<td>10. TASIT</td>
<td>−</td>
<td>.422b</td>
<td>.018</td>
<td></td>
</tr>
<tr>
<td>11. Trust</td>
<td>−</td>
<td>.028</td>
<td>.018</td>
</tr>
<tr>
<td>12. RAD</td>
<td>−</td>
<td>.267b</td>
</tr>
</tbody>
</table>

*a Correlation is significant at the .05 level.

*b Correlation is significant at the .01 level.
apathetic social withdrawal and active social avoidance accounted for the most direct variance of social functioning, future studies should be designed to specifically target these negative symptoms. In addition, cognitive remediation therapy improves cognition (Eack et al., 2013; McGurk et al., 2007; Wykes et al., 2011), improves the extent to which patients benefit from social-cognition training interventions (Lindemayer et al., 2013), and also recently has been shown to be effective in improving certain negative symptoms, specifically social withdrawal, affective flattening and motor retardation (Eack et al., 2013). As social withdrawal and affective flattening were seen to predict social outcomes in this study, these domains of therapies could be investigated, possibly in combined trials, to target multiple different determinants of impaired social outcomes in schizophrenia.

Role of funding source

This research was funded by the National Institute of Mental Health, who provided no input into the analyses and presentation of these data.

Contributions of the authors

Drs. Harvey, Penn, and Pinkham designed the overall study and obtained funding. Dr. Kalin and Ms. Kaplan conceptualized and conducted the current analyses and wrote the first draft of the paper. Dr. Harvey provided scientific oversight throughout the project and edited the manuscript. All authors provided detailed comments on the manuscript.

Conflicts of interest and disclosure

Dr. Harvey has received consulting fees from Boehringer Ingelheim, Forum Pharma, Genentech, Otsuka America, Roche Pharma, Sanofi Pharma, Sunovion Pharma, and Takeda Pharma during the past year. Dr. Pinkham has served as a consultant to Otsuka America. None of the other authors have any commercial interests to report.

Acknowledgments

All individuals who contributed to this paper are listed as authors. No professional medical writer was involved in any portion of the preparation of the manuscripts. Data were collected by paid research assistants who did not contribute to the scientific work in this paper. This research was supported by NIMH grant number 93432 to Drs. Harvey, Penn, and Pinkham.

References


