Dear Author,

Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in the PDF file) or compile them in a separate list. Note: if you opt to annotate the file with software other than Adobe Reader then please also highlight the appropriate place in the PDF file. To ensure fast publication of your paper please return your corrections within 48 hours.

For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions.

Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in the proof. Click on the ‘Q’ link to go to the location in the proof.

<table>
<thead>
<tr>
<th>Location in article</th>
<th>Query / Remark: click on the Q link to go Please insert your reply or correction at the corresponding line in the proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>Please confirm that given names and surnames have been identified correctly.</td>
</tr>
<tr>
<td>Q2</td>
<td>Citation “Rubin et al., 2011” has not been found in the reference list. Please supply full details for this reference.</td>
</tr>
<tr>
<td>Q3</td>
<td>The citation “Bartz et al., 2010” has been changed to match the author name/date in the reference list. Please check here and in subsequent occurrences, and correct if necessary.</td>
</tr>
<tr>
<td>Q4</td>
<td>The citation “MacDonald & Feifel, 2012” has been changed to match the author name/date in the reference list. Please check here and in subsequent occurrences, and correct if necessary.</td>
</tr>
<tr>
<td>Q5</td>
<td>Uncited reference: This section comprises references that occur in the reference list but not in the body of the text. Please position each reference in the text or, alternatively, delete it. Thank you.</td>
</tr>
<tr>
<td>Q6</td>
<td>Reference "Ditzen et al., 2009" is not cited in the text but is included in the reference list. Kindly check.</td>
</tr>
<tr>
<td>Q7</td>
<td>Please check the page range in Ref. "Marsh et al., 2007". Please check this box if you have no corrections to make to the PDF file.</td>
</tr>
</tbody>
</table>

Thank you for your assistance.
A pilot six-week randomized controlled trial of oxytocin on social cognition and social skills in schizophrenia

Clare M. Gibson a,*, David L. Penn b, Kelly L. Smedley c, Jane Leserman c, Tonya Elliott c, Cort A. Pedersen c

a Veterans Affairs Maryland Health Care System, Perry Point VA Medical Center, Perry Point, MD 21902, USA
b Department of Psychology, CB#3270, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
c Department of Psychiatry, CB#7160, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

ARTICLE INFO
Article history:
Received 28 November 2013
Received in revised form 30 March 2014
Accepted 3 April 2014
Available online xxx

Keywords:
Oxytocin
Schizophrenia
Social cognition
Social functioning

1. Introduction
Individuals with schizophrenia demonstrate difficulties in social cognition, which is associated with poor social functioning (Fett et al., 2011). Given the evidence that antipsychotics do not improve social cognition (Penn et al., 2009), there is a need to explore other potential therapeutic approaches, such as oxytocin (OT).

Studies show intranasal OT treatment has prosocial effects and improves aspects of social cognition (Guastella and MacLeod, 2012; Shahrestani et al., 2013). Plasma OT levels in individuals with schizophrenia are related to some aspects of social cognition, trusting behavior and psychiatric symptoms (Goldman et al., 2008; Keri et al., 2009; Rubin et al., 2010, 2011; Walss-Bass et al., 2013). Three recent randomized, placebo-controlled clinical trials all found that intranasal OT treatment significantly decreased psychotic symptoms (Feifel et al., 2010; Pedersen et al., 2011; Modabbernia et al., 2013).

Studies evaluating intranasal OT and social cognition in schizophrenia have demonstrated that a single OT dose is associated with improvements in emotion recognition, specifically accuracy in the recognition and detection of fear (Goldman et al., 2011; Averbeck et al., 2012), social perception (Fischer-Shofty et al., 2013), and higher-order social cognition (Davis et al., 2013). Pedersen et al. (2011) found that two weeks of twice daily OT treatment significantly improved Theory of Mind (ToM) and trended toward increasing trustworthy ratings of untrustworthy faces. The results are promising but their limitations in treatment scope and duration underscore the need to investigate the effects of OT administration for longer periods of time on a broader range of socially relevant measures.

The primary aim of the current study was to evaluate the effects of six weeks of twice daily intranasal OT treatment on social cognition in individuals with schizophrenia. We examined the effect of OT on emotion recognition, Theory of Mind (ToM), empathy, and social perception. Given the preliminary evidence that OT has a beneficial impact on emotion recognition, particularly fear recognition, ToM, empathy and social perception in individuals with schizophrenia, it was hypothesized that OT would lead to improvements in each of these social cognitive domains. We also evaluated the exploratory outcomes of attributional style and social skills (these were considered exploratory given the limited research on OT and these domains). Lastly, we evaluated the effects of OT on clinical psychiatric symptoms. Since the primary aim of the current study was on the impact of OT on social cognition, the evaluation of clinical psychiatric symptoms was considered secondary.

2. Methods
2.1. Participants
The study was approved by the University of North Carolina (UNC) Biomedical Institutional Review Board and conducted in accordance with the Declaration of Helsinki.

* Corresponding author at: Veterans Affairs Maryland Health Care System, Perry Point, MD, United States. Tel.: +1 919 943 0958.
E-mail address: cmarksgibson@gmail.com (C.M. Gibson).

http://dx.doi.org/10.1016/j.schres.2014.04.009
0920-9964/© 2014 Published by Elsevier B.V.
with The Code of Ethics of the World Medical Association. Written informed consent was obtained from all participants.

Participants were outpatients recruited from the UNC Department of Psychiatry Schizophrenia Treatment and Evaluation Program outpatient clinics (Chapel Hill, NC), other schizophrenia programs within psychiatry, and the NC Psychiatric Research Center (Raleigh, NC). Seventeen participants completed their baseline visit and fourteen (OT n = 8; PL n = 6) were retained for six-week analyses. The three dropouts did not differ from retained participants on any of the baseline or demographic variables. Note that for the Interpersonal Reactivity Index, only 5 participants in each group completed the measure since it was added after the study began.

The inclusion criteria for the six-week trial included the following: schizophrenia diagnosis (based on DSM-IV-TR criteria); stability of symptom severity (i.e., no acute psychiatric symptoms); moderate clinical psychiatric symptoms as defined by a total PANSS score greater than 60; social difficulty as defined by a PANSS score of 4 or higher on the suspiciousness/paranoia item, or a 3 on the suspiciousness/paranoia item and 3 or higher on one of the socially relevant PANSS items (e.g. hostility, passive social avoidance, active social avoidance or uncooperativeness item); low to moderate depressive symptoms; on the same medication(s) and dose(s) for at least 1-month prior to study participation; and between the ages of 18 and 55. Diagnosis was based on extensive chart review and consultation with the attending psychiatrist. The Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-I; First et al., 2002), Mood Disorders and Psychotic Disorders modules were administered by trained research clinicians or advanced graduate students for participants who were not followed by UNC’s Department of Psychiatry or participants whose diagnosis was unclear (e.g., schizophrenia versus schizo-affective disorder).

Exclusion criteria included low literacy as indicated by an inability to read and understand the consent form; positive urine drug screen for illegal substances or drugs that have not been prescribed; dependence on substances other than tobacco or caffeine (based on results from urine drug screen, self-report and chart review); debilitating medical conditions; major surgery or trauma in the past year; pregnancy or breast-feeding; having given birth in the past 6 months or breast-feeding in the past 3 months; abnormalities found during medical evaluation during study participation; and an inability to learn self-administration of intranasal treatments.

Note that the two-week outcome data for 10 participants in the current study were reported in the Pedersen et al. (2011) two-week trial; however, all participants had the same exposure to the measures, so practice effects for those in the Pedersen et al. (2011) two-week trial were not a concern. Similarly, there was no difference in exposure between the experimental and control group.

2.2. Procedures

This was a randomized, double-blind, placebo-controlled six-week treatment trial. Within one week after screening, baseline social cognition, social skills, and clinical psychiatric ratings were assessed. Following instruction by research staff in intranasal self-administration, daily intranasal treatments were initiated after baseline assessments were completed. Social cognition, social skills and clinical psychiatric symptom measures were repeated 50 minutes after the morning dose of study medication at the end of treatment week 6.

The social cognitive measures included: The Emotion Recognition-40 (ER-40; Kohler et al., 2004), Theory of Mind Picture Stories Task (Brune, 2003), The Eyes Test (Baron-Cohen et al., 2001), The Interpersonal Reactivity Index (IRI; Davis, 1983), The Trustworthiness Task (Adolphs et al., 1998), The Ambiguous Intentions Hostility Questionnaire-Abbreviated Version (AIHQ; Combs et al., 2007). Social skills were assessed with a role-play measure administered at the baseline and six-week visits. The current study used two role-play scenarios (meeting a new person and consoling a friend). Social skills were coded in three domains: Global skills (i.e., content, overall social skill item, social anxiety), specific skills (i.e., questions, fluency, clarity, meshing, involvement), and nonverbal skills (i.e., gaze, facial affect, appropriate affect; Pinkham and Penn, 2006). Two independent raters, blind to group status, were trained to reliability. They reached acceptable levels of inter-rater reliability for social skills ratings on the role plays (i.e., ICCs ≥ .60; Role play 4 (meeting a new person): Global ICC = .70, Specific skills ICC = .94, Nonverbal ICC = .63 and Role play 2 (consoling a friend): Global ICC = .74, Specific skills ICC = .80, Nonverbal ICC = .60).

Clinical psychiatric symptoms were measured with The Positive and Negative Syndrome Scale (PANSS; White et al., 1997). Trained staff administered the social cognitive, social skills and clinical psychiatric symptom measures. All staff involved in data collection were blind to treatment group.

Participants remained on their pre-study medication regimens and doses throughout the treatment trial. They self-administered intranasal study drug twice daily (before breakfast and before dinner). Each dose consisted of six 0.1 ml insufflations (alternating every 30 seconds between the left and right nostril) of OT spray; the total insufflation at each dose was approximately 24 international units (IU) of OT [Syntocinon Spray, Novartis] or placebo (PL, containing the same ingredients as Syntocinon Spray except for OT). Twenty-four IU is the most commonly used dose in studies that found significant effects of acute intranasal OT treatment (MacDonald and MacDonald, 2010). Outpatient compliance with test treatments was monitored by weighing spray bottles before they were dispensed and after the morning dose during clinic visits at the end of treatment weeks 2, 4 and 6. Participants in the OT and PL groups were evaluated the same number of times and had equal exposure to all study measures.

3. Data analytic plan

Independent t-tests were used to evaluate baseline differences between groups on continuous variables (including primary, secondary and exploratory outcome variables) and chi-square tests were conducted to evaluate baseline differences on categorical variables.

We report within group changes as measured by paired sample t-tests. Statistical significance was set at an alpha level of .05 or below and SPSS was used for all analyses. Cohen’s d effect sizes were calculated to measure the magnitude of treatment effects for within group analyses. The baseline and six-week raw means and standard deviations were used in the effect size calculations. The correlation between the baseline and six-week raw mean score was included in the effect size calculations to correct for dependence between these two means (Morris & Deshon, 2002). The following conventions were used to define the magnitude of treatment effects: small, d = .2; medium, d = .5; large, d = .8 (Cohen, 1988). Note that analyses were not adjusted for multiple comparisons.

4. Results

4.1. Descriptive analyses

Treatment groups only differed on the PANSS positive symptom rating [t(12) = 2.15, p = .05; Table 4] at baseline. Specifically, the PL group had significantly greater positive symptoms at baseline (Table 4). There were no other significant baseline differences on demographic variables, medication compliance (Table 1), primary, exploratory or secondary measures (Tables 2–4).

4.2. Primary analyses

Table 2 shows the baseline and six-week means, standard deviations, and effect sizes for each group on the primary outcome social cognitive variables. Within group analyses revealed a significant improvement in fear recognition in the OT sample [t(7) = 2.37, p = .05].
showed a trend level improvement for second order ToM and 0.01). There were no significant changes for the third order ToM subst-score, deception detection measured by the Brune total score:

There were no significant changes for the other AIHQ sub-scores (Table 3).

Regarding social skills, the PL group showed a trend toward worse global [t(5) = −2.18, p = .08] and nonverbal [t(5) = −2.22, p = .08] social skills for the second role play. There were no within group changes for the social skill sub-scores for the OT group. See Table 3 for social skills means, standard deviations, and effect sizes.

and a corresponding large effect size. The PL sample did not show a significant change in fear recognition [t(5) = −.34, p = .61]; the effect size reflected a small reduction in fear recognition for the PL sample. There were no significant changes over time for recognition of other emotions (angry, sad, happy, neutral) for either group.

Both groups significantly improved on Theory of Mind (ToM) as measured by the Brune total score [OT: t(7) = 2.82, p = .03; PL: t(5) = 2.95, p = .03]. Both groups demonstrated trend level improvements for the ToM sub-score, deception detection [OT (t(7)) = 2.05, p = .08; PL: t(5) = 2.24, p = .08]. The OT group showed a trend level improvement for third order ToM [t(7) = 1.93, p = .10] and the PL group showed a trend level improvement for second order ToM [t(5) = 2.24, p = .08]. Both groups generally showed large effect size improvements on the Brune indices. Neither group showed significant within group improvements on the Eyes Test (Table 2).

Similarly, there were no significant within group changes on the Trustworthiness Task for either group. Effect sizes on the Trustworthiness Task were inconsistent in direction and in the small range. Finally, the OT group showed a significant increase in self-reported perspective taking (PT) at six weeks [t(4) = 3.26, p = .03]. The PL group did not show significant within group PT changes [t(4) = 1.73, p = .16]. The effect size improvement in PT was large for the OT group, while the PL group showed the opposite pattern (worse PT at six weeks). There were no significant within group effects for the other IRI sub-scores.

4.3. Exploratory analyses

In regard to attributional style, both groups showed a significantly reduced hostility bias at six weeks [OT: t(7) = −2.80, p = .03; PL: t(5) = −4.34, p = .007]; the magnitude of the change was large for both groups. There were no significant changes for the other AIHQ sub-scores (Table 3)

Regarding social skills, the PL group showed a trend toward worse global [t(5) = −2.18, p = .08] and nonverbal [t(5) = −2.22, p = .08] social skills for the second role play. There were no within group changes for the social skill sub-scores for the OT group. See Table 3 for social skills means, standard deviations, and effect sizes.

4.4. Secondary analyses

Finally, within group analyses revealed significant reductions in clinical-psychiatric symptoms for both groups. The OT group had a significant decrease on all PANSS sub-scores [positive: t(7) = −3.64, p = .008; negative: t(7) = −5.00, p = .002; and general symptom scores: t(7) = −2.51, p = .04] at six weeks (Table 4).

The PL group showed a significant decrease in PANSS positive [t(5) = −2.62, p = .05] and general symptoms scores [t(5) = −3.16, p = .025] and no significant change on negative symptom rating. The effect sizes for the positive and general symptom reductions were large for both groups, while only the OT group had a large effect size reduction in negative symptoms (Table 4).

Table 2

<table>
<thead>
<tr>
<th>Demographic Variable</th>
<th>Oxytocin (n = 8)</th>
<th>Placebo (n = 6)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age in years</td>
<td>38.88</td>
<td>37.72</td>
<td>.47</td>
</tr>
<tr>
<td>Years since first onset of disorder</td>
<td>15.31</td>
<td>10.28</td>
<td>.36</td>
</tr>
<tr>
<td>Medication compliance (%)</td>
<td>88.88</td>
<td>36.17</td>
<td>.44</td>
</tr>
<tr>
<td>Note: chi-square for comparison of proportions; t-test for age, years since first onset of disorder, number of hospitalizations.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: chi-square for comparison of proportions; t-test for age, years since first onset of disorder, number of hospitalizations.

* The medication compliance for one OT participant was not collected.

Indicates significant change from baseline, p < .05.
Therefore, the IRI results must be interpreted cautiously. and only 10 total participants (5 in each group) completed the measure.
est al., 2011); however, the IRI was implemented after the study began
samples (e.g., see Montag et al. (2007) and Achim et al. (2011)). Addi-
role in regulating fear recognition, which is interesting given accurate
when they were shown fearful faces. It appears OT may have a particular
improvement in the perspective-taking component of empathy
between OT and the recognition of fear.
role in regulating fear recognition, which is interesting given accurate
samples (i.e., six weeks of twice daily oxytocin or placebo) rather than a
single OT dose. We examined social cognition and social skills while
the existing OT randomized control trials have typically focused on the
5. Discussion
This is the first known six-week trial to assess the effects of OT on so-
cial cognition and social skills in schizophrenia. The pattern of results
showed that participants randomized to the OT condition had signifi-
cant improvements in fear recognition and perspective taking, as well
as reduced negative symptoms. Both the OT and PL conditions showed
improvements in Theory of Mind, and reductions in hostility bias, posi-
tive symptoms and general symptoms at six weeks.
The improvement observed in fear recognition is consistent with
others who have found OT is associated with improved fear recognition
in individuals with schizophrenia (Goldman et al., 2011; Averbek et al.,
2012). Improved fear recognition as a function of intranasal OT has
supporting neurological correlates. Specifically, Kirsch et al. (2005)
found reduced amygdalar response in participants given intranasal OT
when they were shown fearful faces. It appears OT may have a particular
role in regulating fear recognition, which is interesting given accurate
fear recognition has been linked to prosocial behavior (Marsh et al.,
2007). Further research is needed to better understand the relationship
between OT and the recognition of fear.
The improvement in the perspective-taking component of empathy
is promising given that schizophrenia samples have repeatedly shown
deficits in self-reported perspective taking as compared to non-clinical
samples (e.g., see Montag et al. (2007) and Achim et al. (2011)). Addi-
tionally, these findings are in accord with previous research showing
improved empathy in non-clinical samples administered OT (Bartz
et al., 2011); however, the IRI was implemented after the study began
and only 10 total participants (5 in each group) completed the measure.
Therefore, the IRI results must be interpreted cautiously.

Both groups demonstrated improved overall Theory of Mind and a
reduced hostility bias. No other significant social cognitive changes
were observed for the OT group. In addition, no significant changes
were observed in social skills. These results suggest that OT may
differentially affect separate aspects of social cognition, which concurs
with a recent review of the literature (Bartz et al., 2011).

Although not a primary outcome, negative symptoms decreased in
the OT treatment group and reflected a large treatment effect (both
groups showed decreased positive and general symptoms). The rela-
tionship between OT and negative symptoms is intriguing given that
antipsychotic medications do not significantly ameliorate negative symptoms
(Bellack et al., 2004). This is consistent with previous re-
search in the area (MacDonald & Fefel, 2012; Modabbernia et al.,
2013), Of note, in the Pedersen et al. (2011) two-week trial, there was
a trend toward a within group decrease in negative symptoms for the
OT group. Thus duration of OT dosing must be considered. In addition
to duration, the amount of OT appears to be another consideration in
assessing the efficacy of OT. Modabbernia et al. (2013) found signifi-
cantly reduced negative symptoms at six and eight weeks after one
week of 20 IUs of twice daily OT followed by 40 IUs of twice daily OT
for the remaining seven weeks. Feifel et al. (2010) found that OT signif-
cantly reduced negative symptoms at three weeks with one week of 20
IUs of twice daily OT and two weeks of 40 IUs of OT sprayed twice daily.
Further research is needed to better understand the relationship
between dosing, duration and efficacy of OT.

This study has a variety of strengths. The current study is an extended
trial (i.e., six weeks of twice daily oxytocin or placebo) rather than a
single OT dose. We examined social cognition and social skills while
the existing OT randomized control trials have typically focused on the

Table 3

<table>
<thead>
<tr>
<th>Measure</th>
<th>Oxytocin (n = 8)</th>
<th>Placebo (n = 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BL Mean (SD)</td>
<td>Week 6 Raw Mean (SD)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AHQ Hostility</td>
<td>2.24 (.41)</td>
<td>1.66 (.53)^a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blame</td>
<td>3.27 (.74)</td>
<td>2.65 (.83)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agg</td>
<td>1.86 (2.8)</td>
<td>1.75 (.32)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social Skills: RP1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global</td>
<td>11.06 (1.74)</td>
<td>11.69 (.88)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific</td>
<td>20.56 (2.69)</td>
<td>19.94 (2.37)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonverbal</td>
<td>12.13 (1.73)</td>
<td>12.19 (1.00)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social Skills: RP2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global</td>
<td>12.13 (.64)</td>
<td>12.25 (1.77)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific</td>
<td>20.25 (1.75)</td>
<td>21.00 (1.79)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonverbal</td>
<td>12.19 (1.31)</td>
<td>11.94 (1.02)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: SD = Standard Deviation; AHQ = Ambiguous Intentions Hostility Questionnaire; Agg = Aggression; Bold indicates statistical significance; RP1 = role play 1; RP2 = role play 2.

^a Effect sizes with a negative sign indicate less hostility, blame and aggression; Positive effect sizes for social skills role play indicate improved social skills; within group effect size accounts for dependence of baseline and week 6 means (correlation between baseline and week 6 means); raw means and standard deviations at baseline and week 6 used in effect size calculations.

^ Indicates significant change from baseline, p < .05

Table 4

<table>
<thead>
<tr>
<th>Measure</th>
<th>Oxytocin (n = 8)</th>
<th>Placebo (n = 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BL Mean (SD)</td>
<td>Week 6 Raw Mean (SD)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAPA Positive^a</td>
<td>16.88 (4.61)</td>
<td>14.00 (3.34)^a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>19.75 (4.10)</td>
<td>17.25 (4.20)^a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General</td>
<td>34.75 (7.01)</td>
<td>29.88 (4.91)^a</td>
</tr>
</tbody>
</table>

Note: SD = Standard Deviation; PAPA = Positive and Negative Syndrome Scale; BL = baseline.

^a Effect sizes with a negative sign indicate a reduction in symptoms; within group effect size accounts for dependence of baseline and week 6 means (correlation between baseline and week 6 means); raw means and standard deviations at baseline and week 6 used in effect size calculations.

^ Indicates significant change from baseline, p < .05.
amelioration of the clinical psychiatric symptoms of schizophrenia. We included a broad range of social cognitive skills to better elucidate the relationship between OT and social cognition in schizophrenia. Moreover, our sample included both men and women (2/8 OT participants were female) whereas the existing OT and schizophrenia literature has not consistently included women.

There are a number of limitations that should be outlined. First, the small sample size precluded making definitive conclusions about the effects of OT treatment on social cognition in schizophrenia, and limited us to examining within group changes rather than between group differences. The small sample additionally limited our ability to evaluate possible moderators (e.g., gender) and mediators. Second, although efforts were made to maintain compliance after the current study, compliance was not 100%. Third, follow-up data were not obtained, so it is unclear whether treatment effects persist after termination of treatment. Lastly, we cannot definitively attribute the social cognitive treatment effects to chronic dosing versus an acute dose (i.e., participants were tested at baseline and 50 minutes after the six-week dose). However, it is important to note that Modabbernia et al. (2013) found that PANSS scores dropped steadily across all time periods so that the decline from baseline was significantly greater for the OT as compared to the PL group for total score at 4 and subsequent weeks and for positive, negative and general scores at six and eight weeks. This result indicates that OT exerts a steadily increasing effect rather than just an acute effect. Regardless, further research should consider waiting a longer period after the last intranasal dose to assess treatment effects in order to clarify this issue.

Overall, the results of the current study indicate that OT may improve fear recognition, perspective taking and negative symptoms in schizophrenia, but has limited impact on other aspects of social cognition and social skills. It remains to be seen if these mixed findings are replicated in larger trials, which underscores the need to continue research in this area.

Role of funding source

Funding for this study was provided by the Foundation of Hope for Research and Treatment of Mental Illness.

Contributors

Authors CMG, CAP, DLP, and KLS collaborated on designing the study; CMG, CAP, DLP, and KLS wrote the protocol and obtained IRB approval. CMG, KLS, and TE coordinated execution of the project. CMG and JLS analyzed the data. CMG wrote the first draft of the manuscript. All authors contributed to and have approved the final manuscript.

Conflict of interest

None of the authors have a conflict of interest.

Q5 Uncited reference

Please cite this article as: Gibson, C.M., et al., A pilot six-week randomized controlled trial of oxytocin on social cognition and social skills in schizophrenia, Schizophr. Res. (2014), http://dx.doi.org/10.1016/j.schres.2014.04.009