Intranasal oxytocin reduces psychotic symptoms and improves Theory of Mind and social perception in schizophrenia

Cort A. Pedersen a,⁎, Clare M. Gibson b, Shane W. Ray a, Kayvon Salimi a, Kelly L. Smedley a, Robin L. Casey a, Jane Leserman a, L. Fredrik Jarskog a, David L. Penn b

a Department of Psychiatry CB# 7160, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
b Department of Psychology CB# 3270, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States

A B S T R A C T

Oxytocin has numerous prosocial and antipsychotic-like effects in animals. Prosocial effects of acute intranasal oxytocin administration have also been reported in human subjects. We conducted a randomized, placebo-controlled trial testing the effects of twice daily intranasal oxytocin treatment for 14 days on psychotic symptoms and social cognition in patients with schizophrenia. PANSS scores declined significantly and several social cognition measures improved significantly or nearly significantly in oxytocin (N=11) but not placebo (N=9) recipients. Our results suggest that, in addition to reducing classic psychotic symptoms, oxytocin may diminish certain social cognition deficits that are not improved by current antipsychotic medications.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Social impairment is a primary cause of disability in schizophrenia, responds poorly to current antipsychotic medications and is related to deficits in social cognitive abilities, which include Theory of Mind, emotion recognition and attributional style (Fett et al., 2011; Green et al., 2005; Penn et al., 2009).

Oxytocin (OT) has many pro-social effects in animals (Carter et al., 1998; Gimpl and Fahrenholz, 2001; Lee et al., 2009; Pedersen et al., 1992) and antipsychotic-like efficacy in preclinical tests (Caldwell et al., 2009; Feifel and Reza, 1999; Lee et al., 2005; 2007). Acute intranasal OT administration in human subjects may elevate OT concentrations in the brain (Born et al., 2002), increase positive social behavior (e.g., interpersonal trust, eye gaze) and improve social cognition (MacDonald and MacDonald, 2010). In patients with schizophrenia, plasma OT concentrations are lower than normal subjects and correlate negatively with psychotic symptoms (Keri et al., 2009; Rubin et al., 2010). Daily intranasal OT treatment for 3 weeks was recently reported to decrease psychotic symptoms in schizophrenia (Feifel et al., 2010).

Based on this body of research, we hypothesized that sustained daily intranasal administration of OT would improve social cognition as well as reduce psychotic symptoms in schizophrenia.

2. Materials and methods

2.1. Subjects

Twenty-three subjects were enrolled; 2 dropped out before randomization to treatment and 1 dropped out early because he developed an upper respiratory infection; the remaining 20 completed the protocol and constitute our study sample. Inclusion criteria were: 18–55 years of age, DSM-IV diagnosis of paranoid or undifferentiated schizophrenia ≥1 year, PANSS total score ≥60, PANSS suspiciousness/persecutory item score ≥4 or 3 on this item and ≥3 on at least one other social behavior-relevant PANSS item (hostility, passive/apathetic social withdrawal, uncooperativeness, active social withdrawal), treatment with one or more standard antipsychotic medications, stability of medication doses and symptoms ≥1 month. See Table S1 (Supplement 1) for exclusion criteria.

The study was approved by the University of North Carolina Biomedical Institutional Review Board and conducted in accordance with The Code of Ethics of the World Medical Association. Written informed consent was obtained from all subjects.

2.2. Procedures

This was a randomized, double blind, placebo-controlled 2-week treatment trial. Screening of subjects included a review of psychiatric and medical history, physical examination, an ECG, and blood and urine collection for standard laboratory tests. Within 1 week after...
screening, baseline social cognition measures were obtained followed by psychiatric ratings. Daily intranasal treatments were initiated after baseline assessments. Social cognition measures and psychiatric ratings were repeated beginning 50 min after the AM dose of study medication on treatment day 14. The social cognition instruments were the Brüne Theory of Mind Picture Stories Task (Brüné, 2003) and the Trustworthiness Task (Adolphs et al., 1998). Psychiatric measures included the Positive and Negative Symptom Scale (PANSS) (Kay et al., 1987) and the Paranoia Scale (Fenigstein and Vanable, 1992). The first 10 subjects were studied as inpatients on a clinical research unit (5 received OT, 5 placebo) and the last 10 subjects were studied in an outpatient research clinic (6 OT, 4 placebo). Blood and urine laboratory tests, ECGs and body weights were obtained at screening and treatment day 14 in all subjects and also on treatment days 3 and 7 in inpatients.

2.3. Study drugs

Subjects remained on their pre-study medication regimen and doses throughout the treatment trial. They self-administered intranasal study drug twice daily; before breakfast and before dinner. Each dose consisted of six 0.1 ml insufflations (alternating between the left and right nostril) of OT spray containing approximately 24 international units of OT [Syntocinon Spray, Novartis] or placebo. Twenty four IU is by far the most commonly used dose in studies that found significant effects of acute intranasal OT treatment (MacDonald and MacDonald, 2010). Outpatient compliance with test treatments was monitored by weighing spray vials before they were dispensed and after the morning dose on treatment day 14.

2.4. Statistical analyses

All dependent variables were examined for normality and skewness prior to analyses. We compared OT and placebo group means using an unpaired t test for the following baseline variables: demographic, psychiatric history and diagnosis, inpatient versus outpatient status, social cognition and psychiatric measures. We performed a paired t test within each treatment group examining changes from baseline to two weeks on the following variables: biological (laboratory test values, vital signs), social cognition measures (Brüne Task, Trustworthiness Task), and psychiatric measures (PANSS total and subscales, Paranoia Scale). To compare the treatment groups over time on social cognition and psychiatric variables, we used analysis of covariance controlling for the baseline measure of the dependent variable.

3. Results

The sample consisted of 17 men and 3 women: 10 Caucasian and 10 African-American. There were no significant demographic or psychiatric history differences between the treatment groups (Table 1). These data and psychotropic medications are summarized for each subject in Table S2 in Supplement 1. Neither treatment group had clinically or statistically significant changes over the 14-day treatment period in laboratory safety measures (CBC, electrolytes, glucose, BUN, creatinine, liver functions, urinalysis), ECGs or vital signs.

Table 2 summarizes the results. There were no differences between treatment groups at baseline on any of the outcome variables. The OT group had significant improvements from baseline to treatment day 14 in accurate identification of second order false belief in the Brüne Task as well as significant reductions in PANSS total, positive subscale, general subscale, suspiciousness/persecutory item, anxiety item and Paranoia Scale scores. In addition, OT recipients showed trends toward significant improvement in accurate recognition of deception in the Brüne Task, rating untrustworthy faces (faces rated by a normative sample as untrustworthy) as less untrustworthy and reductions in PANSS negative subscale scores. The OT group had no changes that approached statistical significance in other Brüne Task measures that have been reported to differ between patients with schizophrenia and healthy controls (second order belief, third order false belief, recognition of cheating; Brüné, 2005). In the placebo group, the only significant change during the treatment period was a decline in PANSS suspiciousness item scores.

We performed a paired t test within each treatment group examining changes from baseline to two weeks on the following variables: biological (laboratory test values, vital signs), social cognition measures (Brüne Task, Trustworthiness Task), and psychiatric measures (PANSS total and subscales, Paranoia Scale). To compare the treatment groups over time on social cognition and psychiatric variables, we used analysis of covariance controlling for the baseline measure of the dependent variable.

4. Discussion

Our results are the first indicating that OT treatment may improve social cognition in schizophrenia. Furthermore, our findings are consistent with the recent report from Feifel et al. (2010) that a relatively brief period of daily intranasal OT treatment reduces psychotic symptoms in medicated patients with schizophrenia.

The improvements in aspects of social cognition in OT recipients are particularly exciting. Social cognition deficits in schizophrenia are among a number of important factors (e.g. negative symptoms) that have been linked to social dysfunction (Couture et al., 2006; Fett et al., 2011), a major cause of disability in schizophrenia and the aspect of the disorder that is least responsive to currently available antipsychotic medications (Penn et al., 2009). Therefore, improvements in social cognition associated with OT treatment could potentially be accompanied by improvements in social functioning.

This report has several limitations that require cautious interpretation of our results. Our sample size was small and the treatment trial duration brief. We present data from only two social cognition tests, the Brüne Theory of Mind Picture Stories Task and the Trustworthiness Task. We don’t know yet whether our results generalize to other social cognition domains. Other instruments were administered to quantify emotion recognition, attributional style and social skill. However, the data from these measures were not available at the time of this submission. In addition, basic neurocognition was not assessed, thus we cannot confidently conclude that OT has a specific impact on social cognition (rather than cognition in general). Higher (non-significantly) baseline social cognition measures in placebo recipients confounded
group comparisons. Longer treatment trials in larger subject samples employing more comprehensive batteries of instruments will be necessary to adequately test whether OT treatment improves all social cognition domains, further reduces psychotic symptoms and enhances social/community functioning.

If longer trials are confirmatory, other questions about OT treatment will require investigation. Is OT solely an augmentor of antipsychotic medications or also an efficacious monotherapy? Would OT treatment increase the effectiveness of psychosocial interventions targeting social cognition (Horan et al., 2008; Roberts et al., 2010)? Can OT treatment stave off the social and functional deterioration occurring early in the course of schizophrenia (first episode) or progression from prodromal symptoms to schizophrenia? Is OT treatment effective in other psychotic disorders or for psychotic symptoms in mood disorders? Furthermore, confirmation that OT treatment is efficacious would establish CNS OT as an important new front in preclinical and clinical investigation of schizophrenia pathophysiology.

Role of funding sources

Funding for this study was provided by the Foundation of Hope (FOH) for Research and Treatment of Mental Illness. Additional support for the project was provided by the NC Translational Research Institute Clinical and Translational Research Center (CTR) supported by CTSA grant UL1RR025747 from the National Center for Research Services. The FOH and the NC Translational Research Institute had no role in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the paper for publication.

Contributors

Authors CAP, DLP, SWR, KS and LFJ collaborated on designing the study; CAP, DLP, SWR, KS, LFJ and CMG wrote the first draft of the manuscript. All authors contributed to and have approved the final manuscript.

Conflict of interest

CAP has submitted U.S. Provisional Patent Application 61/346,347 but otherwise has no potential conflicts of interest. LFJ has received research grant support from GSK and Novartis. All other authors have no conflicts of interest.

Acknowledgments

We are grateful for the technical assistance and dedication to this project of Mcleans Kram, Annelise Lichtenstein, Kathy Jones and Joy Smith at the UNC Department of Psychiatry Clinical Research Unit at Dorothea Dix Hospital in Raleigh, and the nursing and administrative staff at the CTR.

Table 2

<table>
<thead>
<tr>
<th>Outcome measures: means, standard deviations and ranges.</th>
<th>Baseline</th>
<th>Day 14</th>
<th>Placebo</th>
<th>Day 14</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Range</td>
<td></td>
<td>Range</td>
</tr>
<tr>
<td></td>
<td>M (SD)</td>
<td></td>
<td>M (SD)</td>
<td></td>
</tr>
<tr>
<td>Brüne 2nd false</td>
<td>1.91 (.83)</td>
<td>1–3</td>
<td>2.45 (.69)(^{a})</td>
<td>1–3</td>
</tr>
<tr>
<td>Brüne deception</td>
<td>2.27 (.79)</td>
<td>1–3</td>
<td>2.82 (.40)(^{b})</td>
<td>2–3</td>
</tr>
<tr>
<td>Brüne 2nd order</td>
<td>2.00 (0.0)</td>
<td>2–3</td>
<td>2.00 (0.0)</td>
<td>2–2</td>
</tr>
<tr>
<td>Brüne 3rd false</td>
<td>2.00 (1.10)</td>
<td>0–3</td>
<td>2.30 (1.03)</td>
<td>0–3</td>
</tr>
<tr>
<td>Brüne cheating</td>
<td>2.00 (.00)</td>
<td>1–2</td>
<td>1.82 (.41)</td>
<td>1–2</td>
</tr>
<tr>
<td>PANS total score</td>
<td>82.91 (13.59)</td>
<td>61–101</td>
<td>71.82 (11.29)(^{e})</td>
<td>51–86</td>
</tr>
<tr>
<td>PANS positive</td>
<td>20.46 (5.80)</td>
<td>9–30</td>
<td>17.73 (5.44)(^{a})</td>
<td>9–26</td>
</tr>
<tr>
<td>PANS negative</td>
<td>21.00 (4.12)</td>
<td>13–28</td>
<td>18.91 (3.84)(^{a})</td>
<td>13–28</td>
</tr>
<tr>
<td>PANS general</td>
<td>40.64 (7.84)</td>
<td>28–49</td>
<td>35.18 (6.48)(^{e})</td>
<td>24–44</td>
</tr>
<tr>
<td>PANS suspicious</td>
<td>4.45 (0.69)</td>
<td>3–5</td>
<td>3.73 (1.01)(^{b})</td>
<td>2–5</td>
</tr>
<tr>
<td>PANS anxiety</td>
<td>2.73 (1.19)</td>
<td>1–5</td>
<td>1.91 (1.58)(^{b})</td>
<td>1–5</td>
</tr>
<tr>
<td>Paranoia Scale</td>
<td>48.73 (21.53)</td>
<td>23–82</td>
<td>44.91 (21.46)(^{b})</td>
<td>22–82</td>
</tr>
</tbody>
</table>

Range = observed range of scores; Brüne = Brüne Theory of Mind Picture Stories Task; Brüne 2nd false = 2nd order false belief identification score on Brüne Task; Brüne deception = deception identification score; Brüne 2nd order = 2nd order belief identification score; Brüne 3rd false = 3rd order false belief identification score; Brüne cheating = cheating identification score; Trustworthiness = Trustworthiness Task score on untrustworthy faces (scored below the mean by normative group); PANS = Positive and Negative Symptom Scale; Trustworthiness = Trustworthiness Task score on untrustworthy faces (scored below the mean by normative group); PANSS = Positive and Negative Symptom Scale. Superscripts indicate significant within-group differences using paired comparisons t-tests between baseline and day 14. a = p < 0.08, b = p < 0.05, c = p < 0.01, d = p < 0.001; day 14 mean compared to baseline mean.

Appendix A. Supplementary data

Supplementary data to this article can be found online at doi:10.1016/j.schres.2011.07.027.

References


